Facial landmark points detection using knowledge distillation-based neural networks
نویسندگان
چکیده
Facial landmark detection is a vital step for numerous facial image analysis applications. Although some deep learning-based methods have achieved good performances in this task, they are often not suitable running on mobile devices. Such rely networks with many parameters, which makes the training and inference time-consuming. Training lightweight neural such as MobileNets challenging, models might low accuracy. Inspired by knowledge distillation (KD), paper presents novel loss function to train Student network (e.g., MobileNetV2) detection. We use two Teacher networks, Tolerant-Teacher Tough-Teacher conjunction network. The trained using Soft-landmarks created active shape models, while ground truth (aka Hard-landmarks) points. To utilize points predicted we define an Assistive Loss (ALoss) each Moreover, called KD-Loss that utilizes pre-trained (EfficientNet-b3) guide towards predicting Hard-landmarks. Our experimental results three challenging datasets show proposed architecture will result better-trained can extract high • Applying convolutional efficient face alignment. Using Teachers (a tough tolerant network)
منابع مشابه
Facial Landmark Detection with Tweaked Convolutional Neural Networks
We present a novel convolutional neural network (CNN) design for facial landmark coordinate regression. We examine the intermediate features of a standard CNN trained for landmark detection and show that features extracted from later, more specialized layers capture rough landmark locations. This provides a natural means of applying differential treatment midway through the network, tweaking pr...
متن کاملFacial Feature Detection Using Neural Networks
Many human{machine interfaces based on face gestures are strongly user-dependent. We want to overcome this limitation by using common facial features like eyes, nose and mouth for gaze recognition. In a rst step an adaptive color histogram segmentation method roughly determines the region of interest including the user's face. Within this region we then use a hierarchical recognition approach t...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Facial Key Points Detection using Deep Convolutional Neural Network - NaimishNet
Facial Key Points (FKPs) Detection is an important and challenging problem in the fields of computer vision and machine learning. It involves predicting the co-ordinates of the FKPs, e.g. nose tip, center of eyes, etc, for a given face. In this paper, we propose a LeNet adapted Deep CNN model NaimishNet, to operate on facial key points data and compare our model’s performance against existing s...
متن کاملPredicting Personal Traits from Facial Images Using Convolutional Neural Networks Augmented with Facial Landmark Information
We consider the task of predicting various traits of a person given an image of their face. We estimate both objective traits, such as gender, ethnicity and hair-color; as well as subjective traits, such as the emotion a person expresses or whether he is humorous or attractive. For sizeable experimentation, we contribute a new Face Attributes Dataset (FAD), having roughly 200,000 attribute labe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Vision and Image Understanding
سال: 2022
ISSN: ['1090-235X', '1077-3142']
DOI: https://doi.org/10.1016/j.cviu.2021.103316